

Module name:	'WeldCraft – Pro [®]	
Nominal duration:	One module (80 hrs) split over 2 phases (wet and dry welding).	
Module code:	UWSW001 (Underwater Fillet Welder- Plate)	
2: Module purpose:	This module is designed to allow a commercial diver to become competent in MMA/SMAW welding, as prescribed by the International Institute of Welding (IIW) and European Welding Federation (EWF) document 570-01 fillet welder - plate. The programme is accredited/certified by EAL (EMTA Awards) and is recognised by IMarEST as a CPD, with welder qualification testing conducted in accordance with BSEN ISO 15618-1 AWS D3.6-99M-C, or BS4872-1 welding standards.	
3: Prerequisites:	A certified commercial diver trained in surface demand operations to (HSE) or other approved National, or International diving standards.	
4: Content:	Safe underwater welding Introduction to SMAW/MMA plant & equipment Underwater welding techniques Preparing to weld Electrode & weld terminology Basic weldability & common weld defects encountered Monitor & record welding operations QA/QC and welding procedures Join carbon steel plates using standard techniques	
5: Assessment Strate	euv.	
Method	The underpinning theoretical knowledge for all learning outcomes will be assessed by a closed book, multichoice examination paper and include assessment of candidates course work. Practical competency shall be assessed by a welder approval test piece for a fillet weld(s) on plate, in accordance with one or more, of the above specifications.	
Condition of Assessment:	The practical test sample shall be conducted after all training practice has finished (ideally the following day). The diver shall be allowed a short warm-up period (approx 60 minutes) to set up and complete the weldment. This test shall be conducted such that the instructor/assessor and/or inspector can see the diver at all times while welding, with photographic evidence to support each welders test piece.	

6: Learning outcome details:

- 1: Safe underwater welding procedures
- 2: MMA welding plant & equipment
- 3: Underwater welding techniques
- 4: Preparing to weld

- 5: Electrodes & weld terminology
- 6: Basic weldability & common weld defects
- 7: Monitor & control welding operations
- 8: Quality assurance & quality control
- 9: Join C/steel plates using the three standard wet techniques

© Copyright 2002-2010 D J Keats

All rights are reserved. No part of this publication may be reproduced or transmitted in any form or by means including photocopying and recording without written permission.

Learning outcome 1: Safe underwater welding procedures

Assessment criteria: 1.1 Selects correct polarity & current type.

- 1.2 Explains need for safety knife switch, types available & where it should be placed in circuit.
- 1.3 Describes 'IMCA' guidelines for safe use of electricity underwater.
- 1.4 Demonstrates by use, correct welding precautions.
 - a) Correct laying out of cables
 - b) Suitable CSA of cables
 - c) Correct body position to cables when welding
 - d) Suitable joining of cables
 - e) Safe welding procedures (Hot/cold)
 - f) Polarity check
 - g) Required use of rubber gloves
 - h) Selection of welding filter
 - i) Aware of electrolysis dangers
 - j) Suitable diving dress
 - k) Suitable earthing of machine
 - I) Correct start-up/shut-down procedures
- 1.5 Explains requirements of a suitable electrode holder
- 1.6 States correct type of welding cable required
- 1.7 Demonstrates test method for establishing machine is operating efficiently.
- 1.8 Explains potential for electric shock & requirements to minimise potential for receiving a shock

Learning outcome 2: SMAW/MMA welding plant & equipment

Assessment criteria:

- 2.1 Interprets a basic welding circuit for U/W welding
- 2.2 Explains principles of heat ratio & polarity
- 2.3 Uses basic electrical welding terms appropriately
 - a) Open circuit voltage
 - b) Arc voltage
 - c) Ohms
 - d) Electric circuit
 - e) Direct current
 - f) Alternating current
 - g) Arc energy
 - h) Watts
 - i) Duty cycle
- 2.4 Lists types of welding plant available
- 2.5 Explains basic input/output electrical current required
- 2.6 Explains the term drooping characteristic
- 2.7 Explains information as shown on a typical data plate for welding plant
- 2.8 Describes the difference between single/double insulated cables

© Copyright 2002-2010 D J Keats

All rights are reserved. No part of this publication may be reproduced or transmitted in any form or by means including photocopying and recording without written permission.

Learning outcome 3: Underwater welding techniques

Assessment criteria

- 3.1 Explains relationship between Current, voltage and resistance3.2 Demonstrates correct selection & use of standard techniques
 - a) Drag
 - b) Oscillation
 - c) Step-back
- 3.3 Determines voltage drop
- 3.4 Describes the three arc zones of a burning electrode
- 3.5 Explains the role of both lead and slope angles for
 - a) Travel speed control
 - b) Deposition & run placement control
- 3.6 Explains and recognises the following electromagnetic forces, its potential and control.
 - a) Back blow
 - b) Forward blow
 - c) Side blow
- 3.7 Describes demagnetization techniques.
- 3.8 Demonstrates correct placement & conditions of placement of the welding return cable (earth clamp)

Learning outcome 4: Preparing to weld

Assessment criteria

- 4.1 Uses suitable material preparation procedures.
- 4.2 Uses correct electrode preparation techniques.
- 4.3 Carries out suitable polarity check prior to welding
- 4.4 Demonstrates correct current selection
- 4.5 Uses correct welding technique for given pass
- 4.6 Produces suitable recording & monitoring records
- 4.7 Follows welding procedure details

Learning outcome 5: Electrodes & weld terminology

Assessment criteria

- 5.1 Describes classification of electrodes in general
- 5.2 Describes types of underwater electrodes & when each should be used
- 5.3 Stores & handles electrodes correctly
 - a) Above water
 - b) Below water
- 5.4 Explains the functions of an electrode coating
- 5.5 Describes the range of formal welding positions (AWS/BSEN ISO)
- 5.6 Identifies all relevant terms of a typical fillet weld/joint
- 5.7 Identifies typical joint types for fillet welds

© Copyright 2002-2010 D J Keats

All rights are reserved. No part of this publication may be reproduced or transmitted in any form or by means including photocopying and recording without written permission.

Learning outcome 6: Basic weldability & common weld defects

Assessment criteria

- 6.1 Describes the term weldability
- 6.2 Lists the composition & properties of steel
- 6.3 Describes the basic metallurgical problems of wet-welds
- 6.4 States the meaning of the following terms;
 - a) Unaffected metal
 - b) HAZ
 - c) Weld metal
- 6.5 Explains the term carbon equivalent
- 6.6 Describes how steel hardens
- 6.7 Explains causes & prevention of following defects;
 - a) Hydrogen cracking
 - b) Solidification cracking
 - c) Lamellar tearing
 - d) Arc strike
 - e) Lack of fusion
 - f) Cold lap
 - g) Slag inclusions
 - h) Spatter
 - i) Undercut
 - j) Porosity

Learning outcome 7: Monitor & control welding operations

Assessment criteria

- 7.1 Describes & explains all relevant data to be recorded during underwater welding operations;
 - a) Amp & voltage
 - b) Change of current settings
 - c) Weld preparation/joint type
 - d) Lead/slope angles used
 - e) ROL & arc energy values
 - f) Welding techniques
 - g) Earth connection & weld direction
 - h) Polarity
 - i) Type/size of electrodes used
 - j) Number of passes
 - k) Cleaning techniques
 - I) Welding position
 - m) Problems encountered
 - n) Recommended actions for corrections
 - o) Depth
 - p) Water type
 - q) Current & sea state

7.2 Produces a welding procedure specification for a fillet weld

© Copyright 2002-2010 D J Keats

Learning outcome 8: Quality assurance & quality control

Assessment criteria

8.1 Describes the meaning of the following

- a) Quality assurance/control
- b) Welder approval qualification
- c) Essential & non-essential variables
- d) Welding standards/specifications
- e) Welding procedure specification
- 8.2 Follows and produces a welding procedure specification (WPS) sheet
- 8.3 Uses AWS D3.6M / BSEN ISO 15618-1 welding specification as it applies to underwater wet welding

WET:

- 8.4 Explains the basics of the following destructive tests
 - a) Tensile tests
 - b) Bend tests
 - c) Fracture tests
 - d) Impact tests
 - e) Hardness tests
 - f) Macro examination

Learning outcome 9: Join C/steel plates, (dry). Dry welding exercises are broken down into 'stages' and include the exercises as shown below.

Learning outcome 9A: Join C/steel plates, (wet). Wet exercises are broken down into 3 basic welding techniques covering drag, oscillation and step-back.

Assessment criteria DRY:

Stage 1 – (Flat) exercise 1 – single run weld deposit	9.1: Bead on plate
exercise 2 – weaved weld deposit	9.2: Lap joint fillet weld
exercise 3 – pad weld	9.3: Tee joint fillet weld
Stage 2 - (H-V) exercise 1 – Tee joint fillet welds (single/multipass)	
exercise 2 - Lap joint fillet welds (single/multipass)	
Stage 3 - (Vertical-Up) exercise 1 - Tee joint fillet welds (single/multipas	s)

Formal Assessment: On the last day of training, a formal welder qualification test(s) (fillet weld on plate) will be performed, in accordance with AWS D3.6-99M, ISO 15618-1: 2002, or BS 4872-1: 1982 Standards. In addition, the candidate will undertake a multi-choice theory examination paper.

Training Environment: This work should be carried out using carbon steel plate in the order of 8.0mm thick. The diver shall at all times be working in a team environment, using standard safe diving practices as detailed in **'HSE'** or other National/International safety diving standards. The range of tools used may include either pneumatic, hydraulic or hand tools only. It's recommended that all training be conducted in a purpose built tank, using surface demand diving equipment. The tank shall have a viewing window of adequate size to allow the instructor and/or inspector to witness welding operations at all times. However, training may also be conducted in open water, providing the instructor and/or inspector can witness all welding operations.

© Copyright 2002-2010 D J Keats